Posts Trigonometria [Parte 1]
Post
Cancel

Trigonometria [Parte 1]

\[\sum_{n=1}^\infty 1/n^2 = \frac{\pi^2}{6}\]

When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are

\[x = {-b \pm \sqrt{b^2-4ac} \over 2a}\] \[sen(a) = { cateto \space oposto \over hipotenusa } \tan(A) = \frac{\operatorname{sen}(A)}{\cos(A)} \frac{a+b}{a-b}=\frac{\tan\left[\tfrac{1}{2}(A+B)\right]}{\tan\left[\tfrac{1}{2}(A-B)\right]} \frac{b+c}{b-c}=\frac{\tan\left[\tfrac{1}{2}(B+C)\right]}{\tan\left[\tfrac{1}{2}(B-C)\right]} \frac{a+c}{a-c}=\frac{\tan\left[\tfrac{1}{2}(A+C)\right]}{\tan\left[\tfrac{1}{2}(A-C)\right]}\]
Animação interativa
This post is licensed under CC BY 4.0 by the author.